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Abstract In this paper, we are interested in the asymptotic properties for the largest eigen-
value of the Hermitian random matrix ensemble, called the Generalized Cauchy ensemble
GCyE, whose eigenvalues PDF is given by

const ·
∏

1≤j<k≤N

(xj − xk)
2

N∏

j=1

(1 + ixj )
−s−N(1 − ixj )

−s−Ndxj ,

where s is a complex number such that �(s) > −1/2 and where N is the size of the matrix
ensemble. Using results by Borodin and Olshanski (Commun. Math. Phys., 223(1):87–123,
2001), we first prove that for this ensemble, the law of the largest eigenvalue divided by N

converges to some probability distribution for all s such that �(s) > −1/2. Using results by
Forrester and Witte (Nagoya Math. J., 174:29–114, 2002) on the distribution of the largest
eigenvalue for fixed N , we also express the limiting probability distribution in terms of some
non-linear second order differential equation. Eventually, we show that the convergence of
the probability distribution function of the re-scaled largest eigenvalue to the limiting one is
at least of order (1/N).
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1 Introduction and Results

Let H(N) be the set of Hermitian matrices endowed with the measure

const · det(1 + X2)−N
∏

1≤j<k≤N

dXjk

N∏

i=1

dXii, X ∈ H(N), (1.1)

where const is a normalizing constant, such that the total mass of H(N) is equal to one. This
measure is the analogue of the normalized Haar measure μN on the unitary group U(N),
if one relates U(N) and H(N) via the Cayley transform: H(N) � X �→ U = X+i

X−i
∈ U(N).

The measure (1.1) can be deformed to obtain the following two parameters probability mea-
sure:

const · det((1 + iX)−s−N)det((1 − iX)−s−N)
∏

1≤j<k≤N

dXjk

N∏

i=1

dXii, (1.2)

where s is a complex parameter such that �s > −1/2 (otherwise the quantity involved in
(1.2) does not integrate as is proved in [3]). Following Forrester and Witte [10] and [26], we
call this measure the generalized Cauchy measure on H(N). The name is chosen because
if s = 0 and N = 1, (1.2) is nothing else than the density of a Cauchy random variable.
This measure can be projected onto the space R

N/S(N), where S(N) is the symmetric
group of order N and the quotient space is considered as the space of all (unordered) sets of
eigenvalues of matrices in H(N). This projection gives the eigenvalue density

const ·
∏

1≤j<k≤N

(xj − xk)
2

N∏

j=1

wH (xj )dxj , (1.3)

where wH (xj ) = (1 + ixj )
−s−N(1 − ixj )

−s−N , and where the xj ’s denote the eigenvalues,
and as usual, the constant is chosen so that the total mass of R

N/S(N) is equal to one. H(N),
endowed with the generalized Cauchy measure, shall be called the generalized Cauchy ran-
dom matrix ensemble, noted GCyE.

If one replaces the weight wH (x) in (1.3) by w2(x) = e−x2
, then one obtains the Her-

mite ensemble. Similarly, the choice wL(x) = xae−x on R+ or wJ (x) = (1 − x)α(1 + x)β

for −1 ≤ x ≤ 1 leads to the Laguerre or Jacobi ensemble. The three classical weight func-
tions w2, wL and wJ occur in the eigenvalue PDF for certain ensembles of Hermitian ma-
trices based on matrices with independent Gaussian entries (see for example [9]). In [1],
the defining property of a classical weight function in this context was identified as the
following fact: If one writes the weight function w(x) of an ensemble as w(x) = e−2V (x),
with 2V ′(x) = g(x)/f (x), f (x) and g(x) being polynomials in x, then the operator n =
f (d/dx) + (f ′ − g)/2 increases the degree of the polynomials by one, and thus, degf ≤ 2,
and degg ≤ 1. If s ∈ (−1/2,∞), this property actually also holds for the GCyE, and we
obtain a fourth classical weight function (see also Witte and Forrester [26]). However, the
construction of the matrix model for the GCyE is different from the construction of the other
three classical ensembles: A matrix model for the GCyE will not have independent entries,
but one can construct the ensemble via the Cayley transform. Indeed, following Borodin and
Olshanski [3] (see also [9, 10, 26]) the measure (1.2) is, via the Cayley-transform, equiva-
lent to the deformed normalized Haar measure const ·det((1−U)s)det((1−U ∗)s)μN(dU),
U ∈ U(N). If we denote by eiθj , j = 1, . . . ,N , the eigenvalues of a unitary matrix with
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θj ∈ [−π,π], the deformed Haar measure can, as in the Hermitian case, be projected to the
eigenvalue probability measure to obtain the PDF

const ·
∏

1≤j<k≤N

|eiθj − eiθk |2
N∏

j=1

wU(θj )dθj , (1.4)

where wU(θj ) = (1 − eiθj )s(1 − e−iθj )s , and θj ∈ [−π,π]. This measure is defined on
S

N/S(N), where S is the complex unit circle. Note, that this eigenvalue measure has a
singularity at θ = 0, if s �= 0. Borodin and Olshanski [3] studied the measures (1.2), (1.3)
and (1.4) in great detail due to their connections with representation theory of the infinite
dimensional unitary group U(∞).

When s ∈ (−1/2,∞), (1.4) is nothing else than the eigenvalue distribution of the cir-
cular Jacobi unitary ensemble. This is a generalization of the Circular Unitary ensemble
corresponding to the case s = 0. In fact, if s = 1, this corresponds to the CUE case with
one eigenvalue fixed at one. More generally, for s ∈ (−1/2,∞) the singularity at one cor-
responds, in the log-gas picture, to a impurity with variable charge fixed at one, and mobile
unit charges represented by the eigenvalues (see Witte and Forrester [26], and also [11]).
It is the singularity at one that makes the study of this ensemble more difficult than the
CUE. In the special case when s = 0, one can obtain the eigenvalues with PDF (1.3) from
the eigenvalues of the circular unitary ensemble using a stereographic projection (see the
book of Forrester [9], Chap. 2, Sect. 5 on the Cauchy ensemble). In fact, in this case, we
get that (1.3) represents the Boltzmann factor for a one-component log-gas on the real line
subject to the potential 2V (x) = N log(1 + x2). This corresponds to an external charge of
strength −N placed at the point (0,1) in the plane (this can also be generalized to arbitrary
inverse temperature β as given in the previous reference). Moreover, note that when s �= 0,
a construction of a random matrix ensemble with eigenvalue PDF (1.4) is given in [5].

In this paper, we are interested in the convergence and the asymptotic distribution of
the re-scaled largest eigenvalue of a random matrix drawn from the generalized Cauchy
ensemble, for all admissible values of the parameter s, namely �(s) > −1/2. Moreover,
we will also address the problem of the rate of convergence in such a limit Theorem. In
random matrix theory, the distribution of the largest eigenvalue as well as the problem of the
convergence of the scaled largest eigenvalue, have received much attention (see e.g. [20–
23]). Also the latter problem on the rate of convergence has been studied, especially in [12]
and [6] for GUE and LUE matrices, and in [14] as well as in [8] for Wishart matrices. To deal
with the law of the largest eigenvalue, there is a well established methodology (see [17]) for
matrix ensembles with eigenvalue PDF of the form

const ·
∏

1≤j<k≤N

(xj − xk)
2

N∏

j=1

w(xj )dxj , (1.5)

where w(x) is a weight function on R. If one can define the set of monic orthogonal poly-
nomials {pn} with respect to the weight function w(x) on R, then one defines the integral
operator KN on L2(R), associated with the kernel KN(x, y) := ∑N−1

i=0
pi (x)pi (y)

‖pi‖2

√
w(x)w(y).

Using this kernel, the formula to describe probabilities of the form

E(k,J ) := P[there are exactly k eigenvalues inside the interval J ],
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where J ⊂ R and k ∈ N, is (see [17]):

E(k,J ) = (−1)k

k!
dk

dxk
det(I − xKN)|x=1,

where the determinant is a Fredholm determinant and the operator KN is restricted to J .
Note that if one takes J = (t,∞) for some t ∈ R, then E(0, (t,∞)) is simply the probability
distribution of the largest eigenvalue, denoted from now on by λ1(N), of a N × N matrix
in the respective ensemble. In their pioneering work [25], Tracy and Widom give a system
of completely integrable differential equations to show how the probability E(0, J ) can be
linked to solutions of certain Painlevé differential equations. Tracy and Widom apply their
method to the finite Hermite, Laguerre and Jacobi ensembles. Moreover, one can also apply
the method to scaling limits of random matrix ensembles, when the dimension N goes to
infinity. The sine kernel and its Painlevé-V representation for instance, as obtained by Jimbo,
Miwa, Môri and Sato [13], arise if one takes the scaling limit in the bulk of the spectrum
of the Gaussian Unitary Ensemble and of many other Hermitian matrix ensembles (see e.g.
[15, 16, 18] and [19]). On the other hand, if one scales appropriately at the edge of the
Gaussian Unitary Ensemble, one obtains an Airy kernel in the scaling limit with a Painlevé-
II representation for the distribution of the largest eigenvalue (see [23]). Similar results have
been obtained for the edge scalings of the Laguerre and Jacobi ensembles, where the Airy
kernel has to be replaced by the Bessel kernel and the Painlevé-II equation by a Painlevé-V
equation (see Tracy and Widom [24]). Soshnikov [22] gives an overview on scaling limit
results for large random matrix ensembles.

For the eigenvalue measure (1.3), Borodin and Olshanski [3] give the kernel in the finite
N case, denoted by KN in the following (see Theorem 1.1), as well as a scaling limit of this
kernel, when N → ∞, denoted by K∞ (see (1.17)). Using the kernel KN , one can set up
the system of differential equations in the way of Tracy and Widom for the law E(0, (t,∞))

of the largest eigenvalue λ1(N), for any t ∈ R. In the case of a real parameter s, this has
been done by Forrester and Witte in [26]. They obtain a characterization of the law of the
largest eigenvalue in terms of a Painlevé-VI equation. More precisely, (1 + t2) times the
logarithmic derivative of E(0, (t,∞)) satisfies a Painlevé-VI equation. The same method
suitably modified leads to a generalization of this result for complex s. However, the method
of Tracy and Widom has the drawback that it only works for s with �s > 1/2. Forrester and
Witte propose in [10] an alternative method which makes use of τ -function theory, to derive
the Painlevé-VI characterization for E(0, (t,∞)) for any s such that �s > −1/2.

To sum up, for the generalized Cauchy ensemble, it is known that for finite N ,
(1 + t2) times the logarithmic derivative of E(0, (t,∞)) satisfies a Painlevé-VI equa-
tion, for t ∈ R. The orthogonal polynomials associated with the measure wH are known
as well as the scaling limit of the associated kernel KN , which we note K∞. One natu-
rally expects λ1(N), appropriately scaled, to converge in law to the probability distribution
F∞(t) := det(I − K∞)|L2(t,∞), for t > 0 (t ≤ 0 is not permissible in this particular case,
as we will see in remark 1.6). We shall see below that this is indeed the case for all val-
ues of s such that �(s) > −1/2. A natural question is: does (1 + t2) times the logarithmic
derivative of F∞(t) also satisfy some non-linear differential equation? And as previously
mentioned, what is the rate of convergence to F∞(t)?

Statement of the Main Results

We now state our main theorems. Our results are based on earlier work by Borodin and Ol-
shanski [3] who obtained an explicit form for the orthogonal polynomials associated with
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the weight wH as well as the scaling limit for the associated kernel, and Forrester and Witte
[10] who express, for fixed N and for any complex number s, with �(s) > −1/2, the prob-
ability distribution of the largest eigenvalue λ1(N) in terms of some non-linear differential
equation. For clarity and to fix the notations, we first state a Theorem of Borodin and Ol-
shanski [3]. We refer the reader to the paper [3] for more information on the determinantal
aspects. The discussion on the methods we use is postponed to the end of this Section.

Borodin and Olshanski [3] give the correlation kernel for the determinantal point process
defined by the measure (1.3). In fact, the monic orthogonal polynomial ensemble {pm; m <

�s + N − 1
2 } on R associated with the weight wH (x), is defined by p0 ≡ 1, and

pm(x) = (x − i)m
2F1

[
−m, s + N − m, 2�s + 2N − 2m; 2

1 + ix

]
, (1.6)

where 2F1[a, b, c; x] = ∑
n≥0

(a)n(b)n
(c)nn! xn is the Gauss hypergeometric function, and (x)n =

x(x +1) · · · (x +n−1). Using the Christoffel-Darboux formula and the theory of orthogonal
polynomials, the following was proven by Borodin and Olshanski [3]:

Theorem 1.1 The n-point correlation function (n ≤ N ) for the eigenvalue distribution (1.3)
is given by

ρs,N
n (x1, . . . , xn) = det

(
Ks,N(xi, xj )

)n

i,j=1
,

with the kernel Ks,N(x, y) defined on R
2 is given by:

KN(x, y) := Ks,N(x, y) =
N−1∑

m=0

pm(x)pm(y)

‖pm‖2

√
wH (x)wH (y)

= φ(x)ψ(y) − φ(y)ψ(x)

x − y
, (1.7)

with

φ(x) = √
CwH(x)pN(x), (1.8)

and

ψ(x) = √
CwH(x)pN−1(x), (1.9)

where wH (x) = (1 + ix)−s−N(1 − ix)−s−N = (1 + x2)−�s−Ne2�sArg(1+ix) and

C := CN,s = 22�s

π
�

[
2�s + N + 1, s + 1, s + 1

N, 2�s + 1, 2�s + 2

]
. (1.10)

Here, we use the notation:

�

[
a, b, c, . . .

d, e, f, . . .

]
= �(a)�(b)�(c) · · ·

�(d)�(e)�(f ) · · · . (1.11)

Moreover, if x = y, the kernel is given by:

KN(x, x) = φ′(x)ψ(x) − φ(x)ψ ′(x), (1.12)

using the Bernoulli-Hépital rule.
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Note that pN is well-defined (and in L2(wH )) only for �s > 1/2. However,
it can be analytically continued to �s > −1/2 using the hypergeometric expression pN(x) =
(x − i)N

2F1[−N, s, 2�s; 2/(1 + ix)], except if �s = 0. Moreover, Borodin and Olshan-
ski [3] give a way to get rid of the singularity at �s = 0. They introduce the polynomial

p̃N (x) = pN(x) − iNs

�s(2�s + 1)
pN−1(x)

= (x − i)N
2F1

[
−N,s,2�s + 1; 2

1 + ix

]
. (1.13)

This polynomial makes sense for any s ∈ C with �s > −1/2 and one can define the kernel
in Theorem 1.1 equivalently by:

KN(x, y) = C
p̃N(x)pN−1(y) − pN−1(x)p̃N(y)

x − y

√
wH (x)wH (y). (1.14)

We are interested in the distribution of the largest eigenvalue λ1(N) of a matrix in the
GCyE. We have already seen that the probability that λ1(N) is smaller than t , is

E(0, (t,∞)) = det(I − KN)|L2(t,∞), (1.15)

for any t ∈ R. Hence, we need to consider the operator KN with kernel KN(x, y) restricted
to the interval (t,∞) to calculate the probability that no eigenvalue is in the interval (t,∞).
This restriction is symmetric, with eigenvalues between 0 and 1. It is easy to see that KN ,
restricted to any subinterval J (or finite union of subintervals) of R, has no eigenvalue equal
to 1, since E(0, (t,∞)) > 0 for any t ∈ R. This is true because

P (λ1(N) ≤ t) = cst
∫

(−∞,t)N

∏
(xj − xk)

2
∏

wH (xj )dx1 · · ·dxN,

and the integrand is strictly positive. Moreover, restricting the correlation function ρs,N
n of

Theorem 1.1 to J gives

ρs,N
n (x1, . . . , xn)|J =

n∏

j=1

χJ (xj )ρ
s,N
n (x1, . . . , xn)

=
n∏

j=1

χJ (xj )det(KN(xi, xj ))
n
i,j=1

= det(χJ (xi)KN(xi, xj )χJ (xj ))
n
i,j=1, (1.16)

where χJ denotes the indicator function of the set J . Therefore, the restriction of KN to J ,
denoted by KN,J , defines a determinantal process on J with kernel χJ (x)KN(x, y)χJ (y) =:
KN,J (x, y).

Borodin and Olshanski [3] give a scaling limit for the kernel KN(x, y) given in
Theorem 1.1. Namely, limN→∞ NKN(Nx,Ny) = K∞(x, y), for any x, y ∈ R

∗ = R\{0},
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where the kernel K∞ is defined by

K∞(x, y) = 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)

P̃ (x)Q(y) − Q(x)P̃ (y)

x − y
, (1.17)

if x �= y, and,

K∞(x, x) = 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)
(P̃ ′(x)Q(x) − Q′(x)P̃ (x)), (1.18)

where

P̃ (x) = |2/x|�se−i/x+π�s Sgn(x)/2
1F1

[
s,2�s + 1; 2i

x

]
,

Q(x) = (2/x)|2/x|�se−i/x+π�s Sgn(x)/2
1F1

[
s + 1,2�s + 2; 2i

x

]
,

with

1F1

[
r, q;x] =

∑

n≥0

(r)n

(q)nn!x
n,

for any r, q, x ∈ C.

Remark 1.2 The kernel K∞ defines a determinantal point process (see [3] , Theorems IV
and 6.1).

Remark 1.3 If s = 0, the limiting kernel K∞ writes as

K∞(x1, x2) = 1

π

sin(1/x2 − 1/x1)

x1 − x2
.

Under the change of variable y = 1
πx

and taking into account the corresponding change of
the differential dx, K∞ translates to the famous sine kernel with correlation function

ρn(y1, . . . , yn) = det

(
sin(π(yi − yj ))

π(yi − yj )

)n

i,j=1

,

for any n ∈ N and y1, . . . , yn ∈ R (see Borodin and Olshanski [3]).

Before stating our main results, we need to introduce one more notation: we note
K[N](x, y) the kernel

K[N](x, y) := NKN(Nx,Ny), (1.19)

and K[N] the associated integral operator. We also recall the definition of the Fredholm
determinant: if K is an integral operator with kernel given by K(x,y), then the k-correlation
function ρk is defined by:

ρk(x1, . . . , xk) = det(K(xi, xj )1≤i,j≤k).
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The Fredholm determinant F , from R
∗+ to R, is then defined by

F(t) = 1 +
∑

k≥1

(−1)k

k!
∫

(t,∞)k
ρk(x1, . . . , xk)dx1 · · ·dxk. (1.20)

Theorem 1.4 For s such that �s > −1/2 and t > 0, let FN be the Fredholm determinant
associated with K[N], and let F∞ be the Fredholm determinant associated with K∞. Then,
FN and F∞ are in C 3(R∗+,R), and for p ∈ {0,1,2,3}, the p-th derivative of FN (with respect
to t ) converges pointwise to the p-th derivative of F∞.

As an immediate consequence, one obtains the following convergence in law for the
re-scaled largest eigenvalue:

Corollary 1.5 Given the set of N × N random Hermitian matrices H(N) with the gener-
alized Cauchy probability distribution (1.2), denote by λ1(N) the largest eigenvalue of such
a randomly chosen matrix. Then, the law of λ1(N)/N converges to the distribution of the
largest point of the determinantal process on R

∗ described by the limiting kernel K∞(x, y)

in the following sense:

P

[
λ1(N)

N
≤ x0

]
= det(I − KN)|L2(Nx0,∞) −→ det(I − K∞)|L2(x0,∞), as N → ∞,

for any x0 > 0.

Remark 1.6 Note that in the case of finite N , the range of the largest eigenvalue is the whole
real line, whereas in the limit case when N → ∞, the range of the largest eigenvalue is R

∗+.
This is because an infinite number of points accumulate close to 0 (0 itself being excluded
however). The accumulation of the points can be seen from the fact that due to the form of
K∞(x, x) (see (1.18)), limε→∞

∫ ∞
ε

K∞(x, x)dx diverges.

Now, define

θ∞(τ ) = τ
d log det(I − K∞)|L2(τ−1,∞)

dτ
, τ > 0. (1.21)

Using the result of Forrester and Witte [10] for the distribution of the largest eigenvalue for
fixed N and Theorem 1.4, we are able to show:

Theorem 1.7 Let s be such that �s > −1/2. Then the function θ∞ given by (1.21) is well
defined and is a solution to the Painlevé-V equation on R

∗+:

−τ 2(θ ′′(τ ))2 = [
2(τθ ′(τ ) − θ(τ )) + (θ ′(τ ))2 + i(s − s)θ ′(τ )

]2

− (θ ′(τ ))2(θ ′(τ ) − 2is)(θ ′(τ ) + 2is). (1.22)

Remark 1.8 This implies in particular the result of Jimbo, Miwa, Môri and Sato [13] that
the sine kernel, which is the special case of the K∞ kernel with parameter s = 0 (see re-
mark 1.3), satisfies the Painlevé-V equation (1.22) with s = 0.

Eventually, following our initial motivation, we have the following result about the rate of
convergence:
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Theorem 1.9 For all x0 > 0, and for x > x0,

∣∣∣∣P
[

λ1(N)

N
≤ x

]
− det(I − K∞)|L2(x,∞)

∣∣∣∣ ≤ 1

N
C(x0, s),

where C(x0, s) is a constant depending only on x0 and s.

Now, we say a few words about the way we prove the above theorems. Our proofs, split-
ted into several technical lemmas, only use elementary methods; namely, they only involve
checking pointwise convergence and domination in all the quantities involved in the Fred-
holm determinants of K[N] and K∞. We can then apply dominated convergence to show that
the logarithmic derivative of the Fredholm determinant of K[N], as well as its derivatives,
converge pointwise to the respective derivatives of the Fredholm determinant of K∞. This
suffices to show that the Fredholm determinant of K∞ satisfies a Painlevé-V equation be-
cause we can write the rescaled finite N Painlevé-VI equation of Forrester and Witte ([10,
11] and Theorem 2.1 below) as the sum of polynomial functions of the Fredholm determi-
nant of K[N] and their first, second and third derivatives. Moreover, the various estimates
and bounds we obtain for the different determinants and functions involved in our problem
help us to obtain directly an estimate for the rate of convergence in Corollary 1.5 (that is
Theorem 1.9).

Given Theorem 1.1 and the Painlevé VI characterization of Forrester and Witte [10], the
results contained in Theorem 1.4 and Corollary 1.5 are very natural; but yet they have to
be rigorously checked. As far as Theorem 1.7 is concerned, Borodin and Deift [2] obtain
the same equation as (1.22) from the scaling limit of a Painlevé-VI equation characterizing
a general 2F1-kernel similar to our kernel KN (Sect. 8 in [2]). They claim that it is natural
to expect that the appropriately scaled logarithmic derivative of the Fredholm determinant
of their 2F1-kernel solves this Painlevé-V equation. In fact, according to our Theorem 1.7,
(1.21) corresponds to their limit, when N → ∞, of the scaled solution of the Painlevé-VI
equation and solves the Painlevé-V equation (1.22). Borodin and Deift’s method is based on
the combination of Riemann-Hilbert theory with the method of isomonodromic deformation
of certain linear differential equations. The method is very powerful and general; however,
we were not able to apply it in our situation; moreover, it seems that we would have to
restrict ourselves to the values of s such that 0 ≤ �(s) ≤ 1. As we shall mention it later
in the paper, all the ingredients seem to be there to apply the method of Tracy and Widom
[25]; here again, we were not able to find our way: it seems to us (see next section) that with
this method, we could obtain at best a second order non-linear differential equation for θ∞,
which is equivalent to (1.22), but for a restricted range of s: �(s) > 1/2, and thus excluding
the case s = 0 of the sine kernel. On the other hand, our method to prove Theorem 1.7
heavily relies on the result of Forrester and Witte [10] for fixed N : hence we do not provide
a general method to obtain Painlevé equations. However, it is an efficient approach to obtain
some information about the rate of convergence in Corollary 1.5.

2 Proof of Theorems 1.4, and 1.7

In this section, we split the proofs of Theorems 1.4, and 1.7 into several technical Lem-
mas. The notations are those introduced in Sect. 1. Throughout this paper, the notation
C(a0, a1, . . . , an) stands for a positive constant which only depends on the parameters
a0, a1, . . . , an, and whose value may change from line to line (we shall not be interested
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in explicit values for the different constants). We first bring in an ODE that θ∞ should
satisfy; then we prove several technical lemmas about the convergence of the correlation
functions and the derivatives of the kernel K[N]. We shall use these lemmas to show that
θ∞(t) is indeed well defined (i.e. F∞(t) is non-zero for any t > 0) and to prove Theorems
1.4 and 1.7.

2.1 Scaling Limits

We now state a result by Forrester and Witte [10] which will play an important role in the
proof of Theorem 1.7.

Theorem 2.1 For �(s) > −1/2, define

σ(t) = (1 + t2)
d

dt
log det(I − KN)|L2(t,∞)

= (1 + t2)
d

dt
logP [there is no eigenvalue inside (t,∞)].

Then, for t ∈ R, σ(t) satisfies the equation:

(1 + t2)(σ ′′)2 + 4(1 + t2)(σ ′)3 − 8t (σ ′)2σ

+ 4σ 2(σ ′ − (�s)2) + 8(t (�s2) − �s�s − N�s)σσ ′

+ 4(2t�s(N + �s) − (�s)2 − t2(�s)2 + N(2�s + N))(σ ′)2 = 0. (2.1)

Remark 2.2 The ODE (2.1) is equivalent to the master Painlevé equation (SD-I) of Cos-
grove and Scoufis [7]. Cosgrove and Scoufis, show that the solution of this equation can be
expressed in terms of the solution of a Painlevé-VI equation using a Bäcklund transform.
In the case of s real, this transformation is described in Forrester and Witte [26].

Remark 2.3 One can also attempt to use the general method introduced by Tracy and Widom
in [25] for kernels of the form (1.7) to prove the above Theorem. Their method establishes
a system of PDE’s, the so called Jimbo-Miwa-Môri-Sato equations, which can be reduced
to a Painlevé-type equation. The PDE’s consist of a set of universal equations and a set of
equations depending on the specific form of the following recurrence differential equation
for φ and ψ :

m(x)φ′(x) = A(x)φ(x) + B(x)ψ(x),

m(x)ψ ′(x) = −C(x)φ(x) − A(x)ψ(x),
(2.2)

where A,B,C and m are polynomials in x. Doing the calculations for the case of the deter-
minantal process with kernel KN , one obtains that for φ and ψ given in Theorem 1.1, the
recurrence equations (2.2) hold with:

m(x) = 1 + x2,

A(x) = −x�s + �s

(
1 + N

�s

)
,

B(x) = |s|2
�s2

N
2�s + N

2�s + 1
,

C(x) = 2�s + 1.
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Note that this only makes sense if �s �= 0. One can then show that for t ∈ R, and �(s) > 1/2,
(2.1) holds. In the case of s ∈ (1/2,∞) ⊂ R, this Theorem was obtained in this way by
Forrester and Witte in [26] (Proposition 4). We would like to shortly explain the reason why
we were able to make this method work only for �(s) > 1/2. Indeed, the method of Tracy
and Widom has originally been developed for finite intervals (or unions of finite intervals).
If one applies the method to the case of a semi-infinite interval (t,∞), one has to consider
an interval (t, a), where a > t . Then, one writes down the PDE’s of Tracy and Widom
for that interval and takes the limit in all the equations as a → ∞. Note that the variables
in these PDE’s are the end-points t and a of the interval. It is clear, that one has to be
careful about the convergence of the quantities involved in these equations, when a → ∞.
In particular, one needs in our case that the term (1 + a2)Q(a)R(t, a), where R(x, y) is the
kernel of the resolvent operator KN,J (1 − KN,J )−1, and Q(x) = (I − KN,J )−1φ(x), which
is of order a1−2�s , tends to zero, when a → ∞. This implies the restriction �s > 1/2. One
might encounter the same type of obstacle in an attempt to prove Theorem 1.7 with this
method (we will give the corresponding recurrence equations for φ and ψ in the case of K∞
in Remark 2.17).

We now show that when N → ∞, the ODE (2.1) converges to a σ -version of the
Painlevé-V equation. This limiting equation is also given in Borodin and Deift [2] (Proposi-
tion 8.14). Borodin and Deift obtain this equation as a scaling limit of a Painlevé-VI equation
characterizing their 2F1-kernel. However, their 2F1-kernel is different from our kernel KN .

Set for τ > 0,

θ(τ ) := θN(τ ) := τ
d log det(1 − KN)|L2(Nτ−1,∞)

dτ
, (2.3)

where R(x, y) is the kernel of the resolvent operator KN,J (1 − KN,J )−1. Then,

θ(τ ) = τ

(
− N

τ 2

)
R

(
N

τ
,
N

τ

)
= −N

τ

[
σ(N

τ
)

1 + N2

τ2

]
.

It follows that

σ

(
N

τ

)
= −θ(τ )

(
τ

N
+ N

τ

)
,

σ ′
(

N

τ

)
= τ 2

N2
(τθ ′(τ ) + θ(τ )) + (τθ ′(τ ) − θ(τ )),

σ ′′
(

N

τ

)
= − τ 3

N3
[4τθ ′(τ ) + 2θ(τ ) + τ 2θ ′′(τ )] − τ 3

N
θ ′′(τ ).

Now, put this into the ODE (2.1) with t = N
τ

. After dividing by N2, we obtain:

(
1

τ 2

)2

(τ 3θ ′′(τ ))2 + 4

(
1

τ 2

)
(τθ ′(τ ) − θ(τ ))3 + 8

τ
(τθ ′(τ ) − θ(τ ))2 θ(τ )

τ

+ 4

(
θ(τ )

τ

)2

(τθ ′(τ ) − θ(τ ) − (�s)2) − 8

(
(�s)2

τ
− �s

)
θ(τ )

τ
(τθ ′(τ ) − θ(τ ))

+ 4

[
2
�s

τ
− (�s)2

τ 2
+ 1

]
(τθ ′(τ ) − θ(τ ))2 = O(N−1).
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This gives

−τ 2(θ ′′(τ ))2 = 4
{
(θ ′(τ ))2(τθ ′(τ ) − θ(τ ) − (�s)2) + 2�s θ ′(τ )(τθ ′(τ ) − θ(τ ))

+ (τθ ′(τ ) − θ(τ ))2
} + O(N−1).

Now if one neglects the terms of order O(N−1), it is easy to see that this is precisely equation
(1.22). But this is also exactly the σ -form of the Painlevé-V equation in Borodin and Deift
[2], Proposition 8.14.

Hence, θN(τ )(= θ(τ )) satisfies a differential equation which tends to the σ -Painlevé-V
equation and we have the following Proposition:

Proposition 2.4 The ODE (2.1) with the change of variable t = N/τ , τ > 0, is solved by
θN(τ ), and is of the form

m∑

k=0

N−k Pk(τ, θN(τ ), θ ′
N(τ), θ ′′

N(τ))

τ q
= 0,

where m and q are universal integers and the Pk’s are polynomials which are independent
of N . Moreover, P0(τ, θN(τ ), θ ′

N(τ), θ ′′
N(τ))τ−q corresponds to the σ -form of the Painlevé-V

equation (1.22).

Remark 2.5 We note that θN(τ ), given by (2.3), is a solution of the ODE (2.1), with t = N/τ .
Moreover, we know that limN→∞ NKN(x, y) = K∞(x, y), for any x, y ∈ R

∗. Hence it is
natural to guess that θ∞(τ ) should satisfy the ODE (1.22).

2.2 Some Technical Lemmas

For clarity, we decompose the proof of our Theorems into several Lemmas about the con-
vergence of correlation functions and the derivatives of the kernel K[N].

Lemma 2.6 Let K be a function in C2((R∗+)2,R), such that for all k ∈ N, and x1, x2, . . . ,

xk > 0, the matrix K(xi, xj )1≤i,j≤k is symmetric and positive. Define the k-correlation func-
tion ρk by:

ρk(x1, . . . , xk) = det(K(xi, xj )1≤i,j≤k),

and suppose that for (p, q) ∈ {(i, j); i, j ∈ N0, i + j ≤ 2}, for some α > 1/2, and for all
x0 > 0, one has the upper bound

∣∣∣∣
∂p+q

∂xp∂yq
K(x, y)

∣∣∣∣ ≤ C(x0)

(xy)α
, (2.4)

if x, y ≥ x0. Then, ρk is in C2((R∗+)k,R) for all k, and for all x0 > 0, x1, . . . , xk ≥ x0, one
has: ∣∣∣∣∣

∂p

∂x
p

j

ρk(x1, . . . , xk)

∣∣∣∣∣ ≤ (C(x0))
k

(x1 · · ·xk)2α
, (2.5)

if p ∈ {0,1,2} and j ∈ {1, . . . , k}. Moreover,

∂p

∂x
p

j

ρk(x1, . . . , xk) = 0 (2.6)

if p ∈ {0,1}, j ∈ {1, . . . , k} and if there exists j ′ �= j such that xj = xj ′ .
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Proof Fix k ∈ N. The fact that ρk is in C2 is an immediate consequence of the fact that K is
in C2. For x1, . . . , xj−1, xj+1, . . . , xk fixed, the function:

t �→ ρk(x1, . . . , xj−1, t, xj+1, . . . , xk)

is positive by the positivity of K , and equal to zero if t = xj ′ for some j ′ ∈ {1, . . . ,

j − 1, j + 1, . . . , k}. Therefore, t = xj ′ is a local minimum of this function and one de-
duces the equality (2.6). We now turn to the proof of (2.5). By symmetry of ρk , we only
need to show the case j = 1. We isolate the terms containing x1 in the determinant defining
ρk to obtain:

ρk(x1, . . . , xk) =K(x1, x1)det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1K(xi, x1)K(x1, xj )

× det(K(xl+1+1l≥i−1 , xm+1+1m≥j−1)1≤l,m≤k−2),

where we take the convention that an empty sum is equal to 0 and an empty determinant is
equal to 1. One deduces:

∂

∂x1
ρk(x1, . . . , xk) = (K ′

1 + K ′
2)(x1, x1)det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1(K ′
2(xi, x1)K(x1, xj ) + K(xi, x1)K

′
1(x1, xj ))

× det(K(xl+1+1l≥i−1 , xm+1+1m≥j−1)1≤l,m≤k−2),

and

∂2

∂x2
1

ρk(x1, . . . , xk) = (K ′′
1,1 + 2K ′′

1,2 + K ′′
2,2)(x1, x1)det(K(xl+1, xm+1)1≤l,m≤k−1)

+
∑

2≤i,j≤k

(−1)i+j−1(K ′′
2 (xi, x1)K(x1, xj ) + 2K ′

2(xi, x1)K
′
1(x1, xj )

+ K(xi, x1)K
′′
1 (x1, xj ))det(K(xl+1+1l≥i−1 , xm+1+1m≥j−1)1≤l,m≤k−2),

where for p,q ∈ {1,2}, K ′
p denotes the derivative of K with respect to the p-th variable,

and K ′′
p,q denotes the second derivative of K with respect to the p-th and the q-th variable.

By the positivity of K , there exists, for all r ∈ N and y1, . . . , yr , z1, . . . , zr > 0, vectors
e1, . . . , er , f1, . . . , fr of an Euclidean space E equipped with its usual scalar product (.|.),
such that (ei |fj ) = K(yi, zj ) for all i, j ∈ {1, . . . , r}. Now, we can define a scalar product
on the r-th exterior power of E by setting

(u1 ∧ · · · ∧ ur |v1 ∧ · · · ∧ vr) = det((ui |vj )1≤i,j≤r ),

for all u1, . . . , ur , v1, . . . , vr ∈ E. Note that this scalar product is nothing else than a Gram
determinant and we have the upper bound

|det((ei |fj )1≤i,j≤r )| ≤
r∏

i=1

‖ei‖E

r∏

i=1

‖fi‖E,
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‖.‖E being the norm associated to (.|.). This last bound is equivalent to

|det(K(yi, zj )1≤i,j≤r )| ≤
√√√√

r∏

i=1

K(yi, yi)

r∏

i=1

K(zi, zi). (2.7)

Now, let x0 > 0 and x1, . . . , xk ≥ x0. The bound (2.4) given in the statement of the Lemma
and the inequality (2.7) imply

|det(K(xl+1, xm+1)1≤l,m≤k−1)| ≤ (C(x0))
k−1

(x2x3 · · ·xk)2α

and

|det(K(xl+1+1l≥i−1 , xm+1+1m≥j−1)1≤l,m≤k−2)|

≤ (C(x0))
k−2

(x2x3 · · ·xi−1xi+1 · · ·xk)α(x2x3 · · ·xj−1xj+1 · · ·xk)α

= (C(x0))
k−2(xixj )

α

(x2 · · ·xk)2α
.

Hence, each term involved in the expressions of ρk and its two first derivatives with respect
to x1 is smaller than 4(C(x0))

k/(x1 · · ·xk)
2α and therefore, the absolute values of ρk an its

derivatives are bounded by 4((k−1)2 +1)(C(x0))
k/(x1 · · ·xk)

2α ≤ 4k(C(x0))
k/(x1 · · ·xk)

2α ,
implying the bound (2.5). �

Remark 2.7 In the above proof, the value of C(x0) does not change. It is thus possible to
take C(x0) in the inequality (2.5) to be equal to 4 times the value of C(x0) in (2.4).

We now have to prove that the re-scaled kernel K[N] satisfies the hypothesis of Lemma
2.6, and that its partial derivatives converge pointwise to the partial derivatives of K∞. In
the following, we introduce the notation

Fn,h,a(x) = 2F1

[−n,h, a;2/(1 + ix)
]
,

for (n,h, a) ∈ N × C × R
∗+.

Lemma 2.8 Let ε ∈ {0,1}, h ∈ C, a ∈ R
∗+. For N ∈ N, we set n := N − ε. Then, x �→

Fn,h,a(Nx) and x �→ 1F1[h,a;2i/x] are in C∞(R∗), and for all p ∈ N and x ∈ R
∗:

dp

dxp
(Fn,h,a(Nx)) −→

N→∞
dp

dxp
( 1F1[h,a;2i/x]).

Moreover, for all x0 > 0 and for all x ∈ R such that |x| ≥ x0, one has the bound
∣∣∣∣

dp

dxp
(Fn,h,a(Nx))

∣∣∣∣ ≤ C(x0, h, a,p)

|x|p+1p>0
.

Proof One has

Fn,h,a(Nx) =
∞∑

k=0

(−n)k(h)k

(a)kk!
(

2

1 + Nix

)k

,
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where only a finite number of the summands are different from zero. This implies that the
function is C∞ on R

∗, and

dp

dxp
(Fn,h,a(Nx)) =

∞∑

k=0

(−n)k(h)k

(a)kk! (k)p

(
2

1 + Nix

)k+p (
− iN

2

)p

.

The term of order k in this sum is dominated by (note that a > 0)

(|h|)k

(a)kk! (k)p

2k

|x|k+p
,

and for fixed x, tends to

(h)k

(a)kk! (k)p

(2i)k(−1)p

xk+p
,

when N → ∞. One deduces, that for |x| ≥ x0 > 0:

∣∣∣∣
dp

dxp
(Fn,h,a(Nx))

∣∣∣∣ ≤
∞∑

k=0

(|h|)k

(a)kk! (k)p

2k

|x|k+p

≤ 1p=0 + 1

|x|p+1

∞∑

k=1

(|h|)k

(a)kk! (k)p

2k

xk−1
0

≤ C(x0, h, a,p)

|x|p+1p>0

which is the desired bound. Now, by dominated convergence, one has

dp

dxp
(Fn,h,a(Nx)) −→

N→∞

∞∑

k=0

(h)k

(a)kk! (k)p

(2i)k(−1)p

xk+p
.

Hence, Lemma 2.8 is proved if we show that x �→1 F1[h,a;2i/x] is C∞ on R
∗, and that

dp

dxp
( 1F1[h,a;2i/x]) =

∞∑

k=0

(h)k

(a)kk! (k)p

(2i)k(−1)p

xk+p
. (2.8)

But the sum in (2.8) is obtained by taking the derivative of order p of each term of the sum
defining 1F1. Therefore, we are done, since this term by term derivation is justified by the
domination of the right hand side of (2.8) by C(x0, h, a,p)/|x|p+1p>0 on R\(−x0, x0). �

Lemma 2.9 Fix s such that �s > − 1
2 . Define the functions P̃N and QN by

P̃N (x) = 2�s

(
�(2�s + N + 1)

N�(N)

)1/2

p̃N (Nx)
√

wH (Nx),

QN(x) = 2�s+1

(
N�(2�s + N + 1)

�(N)

)1/2

pN−1(Nx)
√

wH (Nx),



388 J. Najnudel et al.

where p̃N , pN−1 and wH are given in Theorem 1.1 and the remark below that Theorem.
Then, P̃N and QN are C∞ on R, P̃ and Q, defined below (1.17), are C∞ on R

∗, and for all
x ∈ R

∗, p ∈ N0,

(Sgn(x))N P̃
(p)

N (x) −→
N→∞

P̃ (p)(x),

(Sgn(x))NQ
(p)

N (x) −→
N→∞

Q(p)(x).

Moreover, for all p ∈ N0, x0 > 0, one has the following bounds:

∣∣∣P̃ (p)

N (x)

∣∣∣ ≤ C(x0, s,p)

|x|p+�s
,

and
∣∣∣Q(p)

N (x)

∣∣∣ ≤ C(x0, s,p)

|x|p+1+�s
,

for all |x| ≥ x0.

Proof We define

�N(x) = D(N,n, s)(Nx − i)nFn,h,a(Nx)(1 + iNx)(−s−N)/2(1 − iNx)(−s−N)/2,

where

D(N,n, s) = 2�s+(N−n)

(
�(2�s + N + 1)

N�(N)

)1/2

NN−n,

and N − n ∈ {0,1} (see Lemma 2.8). Then, if (n,h, a) = (N, s,2�s + 1), �N(x) = P̃N (x)

and if (n,h, a) = (N − 1, s + 1,2�s + 2), �N(x) = QN(x). Moreover, note that �N is a
product of C∞ functions on R.

Now, for δ ∈ {−1,1}:

log(1 + δiNx) = log(1 − δi/Nx) + log(N |x|) + i
π

2
δ Sgn(x),

because both sides of the equality have an imaginary part in (−π,π) and their exponentials
are equal. Hence,

(−s + N

2
− (N − n)

)
log(1 + iNx) + −s − N

2
log(1 − iNx)

=
(−s + N

2
− (N − n)

)
log(1 − i/Nx) + −s − N

2
log(1 + i/Nx)

− (�s + (N − n)) log(N |x|) + niπ Sgn(x)/2 + π�s Sgn(x)/2.

This implies:

�N(x) = D(N,n, s)(−i)n(1 + iNx)(−s+N)/2−(N−n)(1 − iNx)(−s−N)/2Fn,h,a(Nx)

= D(N,n, s)(−i)n(N |x|)−�s−(N−n)eniπ Sgn(x)/2eπ�s Sgn(x)/2

× (1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx)
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= D(N,n, s)(Sgn(x))n(2N)−�s−(N−n)(2/|x|)�s+N−neπ�s Sgn(x)/2

× (1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx)

= D′(N, s)(Sgn(x))Neπ�s Sgn(x)/2(2/x)N−n(2/|x|)�s

× (1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2Fn,h,a(Nx), (2.9)

where for s fixed,

D′(N, s) = D(N,n, s)(2N)−�s−(N−n) =
(

�(2�s + N + 1)

N2�s+1�(N)

)1/2

. (2.10)

This tends to 1 when N goes to infinity. In particular D′(N, s) can be bounded by some
C(s), not depending on N . We investigate all the terms in (2.9) separately in the following.

Let G be the function defined by:

G(y) := (1 − iy/N)(N−s)/2−(N−n)(1 + iy/N)(−s−N)/2.

This function is C∞ on R and one has:

G(p)(y) =G(y)

p∑

q=0

C(p,q)(i/N)q(−i/N)p−q(−(N − s)/2 + N − n)q

× ((N + s)/2)p−q(1 − iy/N)−q(1 + iy/N)−(p−q).

For s, y, p and N − n ∈ {0,1} fixed, the last sum is dominated by some constant C(s,p)

only depending on s and p and tends to (−i)p , as N → ∞. Moreover, G(y) tends to e−iy ,
and

G(y) =
(

1 − iy/N

1 + iy/N

)(N−i�s)/2

(1 − iy/N)−(N−n)(1 + y2/N2)−�s/2.

A simple computation, yields the following:

|G(y)| ≤ C(s)

(
1 + y2

N2

)−�s/2

≤ C(s)(1 + y2)1/4.

This implies that G(p)(y) tends to (−i)pe−iy when N goes to infinity, and that

∣∣G(p)(y)
∣∣ ≤ C(s,p)(1 + y2)1/4.

Now, for all f in C∞(R), the function g defined by x �→ f (1/x) is in C∞(R∗), and there
exist universal integers (μp,k)p∈N0,0≤k≤p , such that μp,0 = 0 for all p ≥ 1, and for p ∈ N0,

g(p)(x) =
p∑

k=0

μp,k

xp+k
f (k)(1/x).

Applying this formula to the functions G and y → e−iy , one obtains the following pointwise
convergence (for x �= 0):

dp

dxp

[
(1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2

] −→
N→∞

dp

dxp
(e−i/x) (2.11)
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with, for |x| ≥ x0 > 0,
∣∣∣∣

dp

dxp

[
(1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−s−N)/2

]∣∣∣∣ ≤ C(x0, s,p)

|x|p+1p>0
. (2.12)

Recall that by Lemma 2.8, one has the convergence

dp

dxp
(Fn,h,a(Nx)) −→

N→∞
dp

dxp
( 1F1[h,a;2i/x]), (2.13)

and the bound
∣∣∣∣

dp

dxp
(Fn,h,a(Nx))

∣∣∣∣ ≤ C(x0, h, a,p)

|x|p+1p>0
≤ C(x0, s,p)

|x|p+1p>0
, (2.14)

since (h, a) only depends on s in the relevant cases (see the beginning of the proof). More-
over,

∣∣∣∣
dp

dxp

[
(2/x)N−n(2/|x|)�s

]∣∣∣∣ ≤ C(s,p)

|x|�s+(N−n)+p
. (2.15)

We can now give the derivatives of �N , using (2.9). One has for p ≥ 0:

(Sgn(x))N dp

dxp
(�N(x)) = D′(N, s)eπ�s Sgn(x)/2

×
∑

q1+q2+q3=p

p!
q1!q2!q3!

dq1

dxq1

[
(2/x)N−n(2/|x|)�s

]

× dq2

dxq2

[
(1 − i/Nx)(N−s)/2−(N−n)(1 + i/Nx)(−N−s)/2

]

× dq3

dxq3

[
Fn,h,a(Nx)

]
.

By (2.10), (2.11) and (2.13), whenever s, x and N − n ∈ {0,1} are fixed, this expression
tends to

eπ�s Sgn(x)/2
∑

q1+q2+q3=p

p!
q1!q2!q3!

dq1

dxq1

[
(2/x)N−n(2/|x|)�s

]

× dq2

dxq2

[
e−i/x

] dq3

dxq3
( 1F1[h,a;2i/x]) ,

for N → ∞. But this is precisely the p-th derivative of P̃ at x if �N = P̃N , and the p-th
derivative of Q at x if �N = QN . Moreover, for |x| ≥ x0 > 0, one easily obtains the bound

∣∣∣∣
dp

dxp
(�N(x))

∣∣∣∣ ≤ C(x0, s,p)

|x|�s+(N−n)+p
,

using (2.10), (2.12), (2.14) and (2.15). This completes the proof of the Lemma. �

Lemma 2.10 Let f and g be two functions which are C∞ from R
∗ to R. We define the

function φ from (R∗)2 to R by

φ(x, y) := f (x)g(y) − g(x)f (y)

x − y
,
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for x �= y, and

φ(x, x) := f ′(x)g(x) − g′(x)f (x).

Then, φ is C∞ on (R∗)2 and for all p,q ∈ N0:

(a) If x �= y:

∂p+qφ

∂xp∂yq
=

p∑

k=0

q∑

l=0

Ck
pCl

q

f (k)(x)g(l)(y) − g(k)(x)f (l)(y)

(x − y)p+q−k−l+1
(−1)p−k(p + q − k − l)!.

(b) If x and y have same sign:

∂p+qφ

∂xp∂yq
=

q∑

k=0

Ck
q

[
g(q−k)(y)

∫ 1

0
f (k+p+1)(y + θ(x − y))θp(1 − θ)kdθ

−f (q−k)(y)

∫ 1

0
g(k+p+1)(y + θ(x − y))θp(1 − θ)kdθ

]
.

Proof (a) By induction, one proves that for all p,q ∈ N0, and for x, y ∈ R distincts and
different from zero, it is possible to take, in a neighborhood of (x, y), p derivatives of φ

with respect to x and q derivatives of φ with respect to y, in any order, with a result equal
to the expression given in the statement of the Lemma. This implies the existence and the
continuity of all partial derivatives of φ in (R∗)2\{(x, x), x ∈ R

∗}. Therefore, φ is C∞ in
this open subset of (R∗)2.

(b) With the same method as in (a), we obtain that φ is C∞ on (R∗−)2 ∪ (R∗+)2. The only
technical issues are the continuity and the derivation under the integral. These can easily be
justified by the boundedness of the derivatives of f and g in any compact set of R

∗. �

Proposition 2.11 Let x, y ∈ R
∗ and let �s > −1/2. Then K[N] and K∞ are C∞ in (R∗)2

and for all p,q ∈ N0,

(Sgn(xy))N ∂p+q

∂xp∂yq
K[N](x, y) −→

N→∞
∂p+q

∂xp∂yq
K∞(x, y).

Moreover, for any x0 > 0, and |x|, |y| ≥ x0 > 0:
∣∣∣∣

∂p+q

∂xp∂yq
K[N](x, y)

∣∣∣∣ ≤ C(x0, s,p, q)

|x|�s+p+1|y|�s+q+1
.

Note that the pointwise convergence in the case p = q = 0 corresponds to the conver-
gence result for the kernels given by Borodin and Olshanski [3].

Proof One has

(Sgn(xy))NK[N](x, y)

= 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)

× (Sgn(x))N P̃N(x)(Sgn(y))NQN(y) − (Sgn(y))N P̃N(y)(Sgn(x))NQN(x)

x − y
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for x �= y, and

K[N](x, x) = 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)
(P̃ ′

N(x)QN(x) − Q′
N(x)P̃N(x)),

with P̃N and QN defined in Lemma 2.9. Recall the definition of K∞ in (1.17) and (1.18).
Now, P̃N , QN , P̃ and Q are in C∞(R∗) (see Lemma 2.9) and hence, by Lemma 2.10, K[N]
and K∞ are in C∞((R∗)2).

Moreover, by Lemma 2.9, the derivatives of x �→ SgnN(x)P̃N(x) and x �→ SgnN(x)×
QN(x) converge pointwise to the corresponding derivatives of P̃ and Q. Considering, for
x �= y, the expression (a) of Lemma 2.10, and for x = y, the expression (b), one easily
deduces the pointwise convergence of the derivatives of (x, y) �→ (Sgn(xy))NK[N](x, y)

towards the corresponding derivatives of K∞.
Finally, the bounds given in the statement of the Lemma can be obtained from the

bounds of the derivatives of P̃N and QN , given in Lemma 2.9, and by applying the formula
(a) of Lemma 2.10 if xy < 0 or max(|x|, |y|) > 2 min(|x|, |y|) (which implies |x − y| ≥
max(|x|, |y|)/2), or the formula (b) if xy > 0 and max(|x|, |y|) ≤ 2 min(|x|, |y|). �

Summarizing, we have:

Proposition 2.12 Let s be such that �s > − 1
2 . Then, the restriction to R

∗+ of the scaled
kernel K[N] and the kernel K∞ satisfy the conditions of Lemma 2.6. Moreover, for all p,q ∈
N0, the partial derivatives

Sgn(xy)N ∂p+q

∂xp∂yq
K[N](x, y)

converge pointwise to the corresponding partial derivatives of K∞(x, y).

Proof This follows immediately from Proposition 2.11 and the fact that these kernels are
real symmetric and positive because they are kernels of determinantal processes on the real
line (see remark 1.2 for the kernel K∞). �

The next step is to analyze the convergence of the Fredholm determinant of KN,J and
its derivatives to the corresponding derivatives of the Fredholm determinant of K∞,J , for
J = (t,∞), t > 0.

Lemma 2.13 Let F be a function defined from (R∗+)k+1 to R, for some k ∈ N. We suppose
that F is in C1, and that there exists, for some α > 1 and for all x0 > 0, a bound of the form

|F(t, x1, x2, . . . , xk)| +
∣∣∣∣
∂

∂t
F (t, x1, x2, . . . , xk)

∣∣∣∣ ≤ C(x0)

(x1 · · ·xk)α
,

for all t, x1, . . . , xk ≥ x0. Then, the integrals involved in the definitions of the following two
functions from R

∗+ to R are absolutely convergent:

H0 : t �→
∫

(t,∞)k
F (t, x1, . . . , xk)dx1 · · ·dxk,

and

H1 : t �→
∫

(t,∞)k

∂

∂t
F (t, x1, . . . , xk)dx1 · · ·dxk
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−
k∑

l=1

∫

(t,∞)k−1
F(t, x1, . . . , xl−1, t, xl+1, . . . , xk)dx1 · · ·dxl−1dxl+1 · · ·dxk.

Moreover, the first derivative of H0 is continuous and equal to H1.

Proof Due to the bound given in the Lemma, it is clear that all the integrals in the defini-
tion of H0 and H1 are absolutely convergent. Therefore, for 0 < t < t ′, we can use Fubini’s
Theorem in order to compute the integral

∫ t ′

t

H1(u)du.

Straightforward computations show that this integral is equal to H0(t
′) − H0(t). Hence,

if we prove that H1 is continuous, we are done. Now, let t > x0 > 0. For t ′ > x0, one has

|H1(t
′) − H1(t)|

≤
∫

(x0,∞)k

∣∣∣∣
∂

∂t ′
F(t ′, x1, . . . , xk)1{x1,...,xk>t ′}

− ∂

∂t
F (t, x1, . . . , xk)1{x1,...,xk>t}

∣∣∣∣dx1 · · ·dxk

+
k∑

l=1

∫

(x0,∞)k−1

∣∣F(t ′, x1, . . . , xl−1, t
′, xl+1, . . . , xk)1{x1,...,xl−1,xl+1,...xk>t ′}

− F(t, x1, . . . , xl−1, t, xl+1, . . . , xk)1{x1,...,xl−1,xl+1,...xk>t}
∣∣dx1 · · ·dxl−1dxl+1 · · ·dxk.

All the terms inside the integrals converge to zero almost everywhere when t ′ → t (more
precisely, whenever the minimum of the xj ’s is different from t ). Hence, by dominated
convergence, |H1(t

′) − H1(t)| tends to zero when t ′ → t . �

Lemma 2.14 Let K be a function satisfying the conditions of Lemma 2.6. Then, using the
notation of that Lemma,

∑

k≥1

1

k!
∫

(t,∞)k
ρk(x1, . . . , xk)dx1 · · ·dxk < ∞

for all t > 0. Moreover, the Fredholm determinant F , from R
∗+ to R, defined in (1.20) is in

C3, and its derivatives are given by

F ′(t) =
∑

k≥0

(−1)k

k!
∫

(t,∞)k
ρk+1(t, x1, . . . , xk)dx1 · · ·dxk,

F ′′(t) =
∑

k≥0

(−1)k

k!
∫

(t,∞)k

∂

∂t
ρk+1(t, x1, . . . , xk)dx1 · · ·dxk,

F ′′′(t) =
∑

k≥0

(−1)k

k!
∫

(t,∞)k

∂2

∂t2
ρk+1(t, x1, . . . , xk)dx1 · · ·dxk,

where all the sums and the integrals above are absolutely convergent.
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Proof For k ≥ 1, we define Fk by

Fk(t) = (−1)k

k!
∫

(t,∞)k
ρk(x1, . . . , xk)dx1 · · ·dxk.

The integral is finite because of the bounds given in Lemma 2.6. By the same bounds, one
can apply Lemma 2.13 three times, to obtain that Fk is in C3, with the derivatives given by

F ′
k(t) = (−1)k−1

(k − 1)!
∫

(t,∞)k−1
ρk(t, x1, . . . , xk−1)dx1 · · ·dxk−1,

F ′′
k (t) = (−1)k−1

(k − 1)!
∫

(t,∞)k−1

∂

∂t
ρk(t, x1, . . . , xk−1)dx1 · · ·dxk−1,

F ′′′
k (t) = (−1)k−1

(k − 1)!
∫

(t,∞)k−1

∂2

∂t2
ρk(t, x1, . . . , xk−1)dx1 · · ·dxk−1,

where again all the integrals are absolutely convergent by Lemma 2.6. Note that we use (2.6)
to calculate the derivatives above. Moreover, for p ∈ {0,1,2,3}, (2.5) gives the following
bound for any x0 > 0:

sup
t≥x0

|F (p)

k (t)| ≤ (C(x0))
k

(k − 1)! .

Using dominated convergence, we have that the sum
∑

k≥1

Fk(t)

is absolutely convergent, and that its p-th derivative, p ∈ {0,1,2,3} with respect to t is
continuous and given by the absolutely convergent sum

∑

k≥1

F
(p)

k (t). �

2.3 θ∞ is Well Defined

In order to prove that θ∞ is well defined, we need to prove that F∞(t) never vanishes for
t > 0 (recall from Remark 1.6 that the range of the largest eigenvalue is R

∗+). We note
that F∞(t) is the Fredholm determinant of the restriction of the operator K∞ to the space
L2((t,∞)), which can also be seen as the operator on L2((t0,∞)) with kernel (x, y) →
K∞(x, y)1x,y>t , for some t0 such that t > t0 > 0. This operator is positive, and we recall
that it is a trace class operator, since:

∫

(t,∞)

K∞(x, x) dx < ∞.

Therefore, the Fredholm determinant of this operator is given by the convergent product of
1 − λj , where (λj )j∈N is the decreasing sequence of its (positive) eigenvalues, with mul-
tiplicity. This implies that the determinant is zero if and only if 1 is an eigenvalue of the
operator: hence, we only need to prove that this is not the case. Indeed, if 1 is an eigenvalue,
there exists f �= 0 in L2((t0,∞)) such that for almost all x ∈ (t0,∞):

f (x) = 1x>t

∫ ∞

t

K∞(x, y)f (y) dy.
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Hence f (x) = 0 for almost every x ≤ t , and

f = p(t,∞)K∞,(t0,∞)f

in L2((t0,∞)), where K∞,(t0,∞) is the operator on this space, with kernel K∞, and p(t,∞)

is the projection on the space of functions supported by (t,∞). Now, if we denote g :=
K∞,(t0,∞)f ,

‖g‖2
L2((t0,∞))

=
∫ ∞

t0

∫ ∞

t0

∫ ∞

t0

K∞(x, y)K∞(x, z)f (y)f (z) dx dy dz.

By dominated convergence, one can check that ‖g‖2
L2((t0,∞))

is the limit of

∫ ∞

t0

∫ ∞

t0

∫ ∞

t0

K[N](x, y)K[N](x, z)f (y)f (z) dx dy dz

when N goes to infinity. This expression is equal to ‖p(t0,∞)K[N]f̃ ‖2
L2(R)

, and hence, smaller

than or equal to ‖K[N]f̃ ‖2
L2(R)

, where the operators p(t0,∞) and K[N] act on L2(R), and where

f̃ is equal to f on (t0,∞) and equal to zero on (−∞, t0]. Now, K[N] (as KN ) is an orthogonal
projector on L2(R) (with an N -dimensional image), hence, ‖K[N]f̃ ‖L2(R) ≤ ‖f̃ ‖L2(R). This
implies:

‖g‖L2((t0,∞)) ≤ ‖f ‖L2((t0,∞)).

Now, with obvious notation:

‖g‖2
L2((t0,∞))

= ‖p(t,∞)g‖2
L2((t0,∞))

+ ‖p(t0,t]g‖2
L2((t0,∞))

= ‖f ‖2
L2((t0,∞))

+ ‖p(t0,t]g‖2
L2((t0,∞))

since f = p(t,∞)g. By comparing the last two equations, one deduces that

‖p(t0,t]g‖2
L2((t0,∞))

= 0,

which implies that g is supported by (t,∞), and

f = p(t,∞)g = g = K∞,(t0,∞)f.

Hence, K∞,(t0,∞)f (equal to f ), takes the value zero a.e. on the interval (t0, t). Since f is
different from zero, one easily deduces a contradiction from the following Lemma:

Lemma 2.15 Let f be a function in L2((t,∞)) for some t > 0. Then the function g from
R

∗+ to R, defined by:

g(x) =
∫ ∞

t

K∞(x, y)f (y) dy

is analytic on {z ∈ C; �(z) > 0}.

Proof It is sufficient to prove that for all x0 such that 0 < x0 < t/2, g can be extended
to a holomorphic function on the set Hx0 := {x ∈ C;�(x) > x0}. Let (ε, h, a) be equal to
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(0, s,2�(s)+ 1) or (1, s + 1,2�(s)+ 2), and � equal to P̃ in the first case, Q in the second
case. One has for x ∈ R

∗+:

�(x) =
(

2

x

)�(s)+ε

e−i/xeπ�(s)/2
1F1[h,a;2i/x].

� can easily be extended to Hx0 : for the first factor, one can use the standard extension of
the logarithm (defined on C\R−), and the last factor is a hypergeometric series which is uni-
formly convergent on Hx0 . Moreover, it is easy to check (by using dominated convergence
for the hypergeometric factor), that this extension of � is holomorphic with derivative:

�′(x) = eπ�s/2

(
2

x

)�s+ε

e−i/x

×
[−(�s + ε)

x
1F1[h,a;2i/x] + i

x2 1F1[h,a;2i/x]

−
∞∑

k=0

(h)k(2i)kk

(a)kk!
(

1

x

)k+1
]

.

With these formulae, one deduces the following bounds, available on the whole set Hx0 :

|�(x)| ≤ C(x0, s)

|x|�(s)+ε
,

|�′(x)| ≤ C(x0, s)

|x|�(s)+ε+1
.

Now, let us fix y ∈ (t,∞). Recall that for x ∈ R
∗+\{y}:

K∞(x, y) = 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)

P̃ (x)Q(y) − Q(x)P̃ (y)

x − y
. (2.16)

This formula is meaningful for all x ∈ Hx0\{y} and gives an analytic continuation of x �→
K∞(x, y) to this set. Now, for x > x0, one also has the formula:

K∞(x, y) = 1

2π

�(s + 1)�(s + 1)

�(2�s + 1)�(2�s + 2)
E

[
P̃ ′(Z)Q(y) − Q′(Z)P̃ (y)

]
,

where Z is a uniform random variable on the segment [x, y]. By the bounds obtained for �

and �′, one deduces that the continuation of x �→ K∞(x, y) to the set Hx0\{y} is bounded
in the neighborhood of y, and hence can be extended to Hx0 . By construction, this extension
coincides with K∞(x, y) for x ∈ (x0,∞)\{y}, and in fact it coincides on the whole interval
(x0,∞), since K∞(x, y) tends to K∞(y, y) when x is real and tends to y. In other words,
we have constructed an extension of x �→ K∞(x, y) which is holomorphic on Hx0 . Now,
let us take x ∈ Hx0 such that |x − y| ≥ y/2, which implies that |x − y| ≥ C(|x| + y) for a
universal constant C. By using this inequality and the bounds on P̃ and Q, one obtains:

|K∞(x, y)| ≤ C(s, x0)

|xy|�(s)+1
.
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By taking the derivative of the equation (2.16), one obtains the bound (again for x ∈ Hx0

and |x − y| ≥ y/2):
∣∣∣∣

∂

∂x
K∞(x, y)

∣∣∣∣ ≤ C(s, x0)

|x|�(s)+2y�(s)+1
.

Now, the maximum principle implies that the condition |x − y| ≥ y/2 can be removed in
the last two bounds. By using these bounds, Cauchy-Schwarz inequality and dominated
convergence, one deduces that the function:

x �→
∫ ∞

t

K∞(x, y)f (y) dy

is well defined on the set Hx0 , and admits a derivative, given by the formula:

x �→
∫ ∞

t

(
∂

∂x
K∞(x, y)

)
f (y)dy. �

2.4 Proof of Theorem 1.4

Note that by Proposition 2.12, K[N] and K∞ satisfy the conditions of Lemma 2.6. For
k,N ∈ N, let ρk,N be the k-correlation function associated with K[N] and ρk,∞ the k-
correlation function associated with K∞. By Lemma 2.14, FN is well defined for N ∈
N ∪ {∞}, and C3. The explicit expressions of FN and F∞ and their derivatives are given
in Lemma 2.14 by replacing ρk by ρk,N and ρk,∞ respectively. Now, for k ≥ 1, all the partial
derivatives of any order of ρk,N converge pointwise to the corresponding derivatives of ρk,∞
when N goes to infinity. This is due to the explicit expression of ρk,N as a determinant and
the convergence given by Proposition 2.12. Moreover, by that same Proposition, there exists
α > 1/2 only depending on s such that

∣∣∣∣
∂p

∂x
p

1

ρk,N (x1, . . . , xk)

∣∣∣∣ ≤ C(x0, s)
k

(x1 · · ·xk)2α
,

for p ∈ {0,1,2}, and for all x1, . . . , xk ≥ x0 > 0. In particular, this bound is uniform with
respect to N , and it is now easy to deduce the pointwise convergence of the derivatives of
FN (up to order 3), by dominated convergence.

2.5 Proof of Theorem 1.7

Theorem 1.7 follows immediately from Proposition 2.4 and the following Proposition:

Proposition 2.16 Let s be such that �s > −1/2, and FN , N ∈ N, and F∞ be as in Theo-
rem 1.4. Then, for N ∈ N ∪ {∞}, the function θN from R

∗+ to R, defined by

θN(τ ) = τ
d

dτ
log(FN(τ−1)),

is well defined and C2. Moreover, for p ∈ {0,1,2}, the derivatives θ
(p)

N converge pointwise
to θ

(p)
∞ (defined by (1.21)).



398 J. Najnudel et al.

Proof Recall that for t > 0, FN(t) is the probability that a random matrix of dimension N ,
following the generalized Cauchy weight (1.2), has no eigenvalue in (Nt,∞). Therefore,
FN(t) > 0, for any t > 0. Similarly, F∞(t) is the probability that the limiting determinantal
process has no point in (t,∞), which is also different from zero for any t > 0, as we proved
in Sect. 2.3. Therefore, for all N ∈ N ∪ {∞}, θN is well-defined and

θN(τ ) = − F ′
N(τ−1)

τFN(τ−1)
.

Since FN is in C3, θN is in C2, for all N ∈ N ∪ {∞}, and one can give explicit expressions
for θN and for its first two derivatives (see Lemma 2.14). It is now easy to deduce from
these explicit expressions and the pointwise convergence of the first three derivatives of FN

assured by Theorem 1.4, the pointwise convergence for the first two derivatives of θN , when
N ∈ N goes to infinity. �

Remark 2.17 Note that most probably, it is also possible to derive the fact that the kernel
K∞ gives rise to a solution of the Painlevé-V equation (1.22) directly by the methods of
Tracy and Widom [25] in an analogous way then the one used to obtain the Painlevé-VI
equation (2.1) in the finite N case. In fact, the recurrence equations (2.2) in the infinite case
are:

x2P ′(x) =
(

−x�s + �s

�s

)
P (x) + |s|2

�s2

1

2�s + 1
Q(x),

x2Q′(x) = −(2�s + 1)P (x) −
(

−x�s + �s

�s

)
Q(x),

where P and Q are as in the definition of K∞ in (1.17) and (1.18). However, this method
will has several drawbacks, as already mentioned in the introduction.

3 The Convergence Rate: Proof of Theorem 1.9

We first need the rate of convergence for the scaled kernel K[N](x, y) = NKN(Nx,Ny):

Lemma 3.1 Let x, y > x0 > 0. Then there exists a constant C(x0, s) > 0 only depending on
x0 and s ∈ C (�s > −1/2), such that

∣∣K[N](x, y) − K∞(x, y)
∣∣ ≤ 1

N

C(x0, s)

(xy)�s+1
.

In the following proof, C(a, b, . . .) denotes a strictly positive constant only depending on
a, b, . . . which may change from line to line.

Proof Let x, y > x0, x �= y. Then, setting C(s) = | 1
2π

�(s+1)�(s+1)

�(2�s+1)�(2�s+2)
|, and using the nota-

tions from Lemma 2.9, we have

∣∣K[N](x, y) − K∞(x, y)
∣∣

= C(s)

∣∣∣∣
1

x − y

∣∣∣∣
∣∣∣P̃N (x)QN(y) − P̃N (y)QN(x) − (P̃ (x)Q(y) − P̃ (y)Q(x))

∣∣∣
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≤ C(s)

∣∣∣∣
1

x − y

∣∣∣∣
{∣∣∣P̃N (x)QN(y) − P̃ (x)Q(y)

∣∣∣ +
∣∣∣P̃N (y)QN(x) − P̃ (y)Q(x)

∣∣∣
}

≤ C(s)

∣∣∣∣
1

x − y

∣∣∣∣
{∣∣∣P̃N (x) − P̃ (x)

∣∣∣ |QN(y)| + |QN(y) − Q(y)|
∣∣∣P̃ (x)

∣∣∣

+
∣∣∣P̃N (y) − P̃ (y)

∣∣∣ |QN(x)| + |QN(x) − Q(x)|
∣∣∣P̃ (y)

∣∣∣
}

. (3.1)

Similarly, if x, y > x0, it is easy to check (by using the fundamental Theorem of calculus)
that

∣∣K[N](x, y) − K∞(x, y)
∣∣

≤ C(s)E
[∣∣∣P̃ ′

N(Z) − P̃ ′(Z)

∣∣∣ |QN(x)| + |QN(x) − Q(x)|
∣∣∣P̃ ′(Z)

∣∣∣

+
∣∣∣P̃N (x) − P̃ (x)

∣∣∣
∣∣Q′

N(Z)
∣∣ + ∣∣Q′

N(Z) − Q′(Z)
∣∣
∣∣∣P̃ (x)

∣∣∣
]
, (3.2)

where Z is a uniform random variable in the interval [x, y].
By using (3.1) if max(x, y) ≥ 2 min(x, y) and (3.2) if max(x, y) < 2 min(x, y), one de-

duces that the Lemma is proved, if we show that for p ∈ {0,1},
∣∣∣P̃ (p)

N (x) − P̃ (p)(x)

∣∣∣ ≤ 1

N

C(x0, s,p)

xp+�s
, (3.3)

and
∣∣∣Q(p)

N (x) − Q(p)(x)

∣∣∣ ≤ 1

N

C(x0, s,p)

xp+1+�s
. (3.4)

Recall from (2.9), the following function (note that x > x0 > 0):

�N(x) =D′(N, s)eπ�s/2

(
2

x

)N−n (
2

x

)�s

×
(

1 − i

Nx

)(N−s)/2−(N−n) (
1 + i

Nx

)−(s+N)/2

Fn,h,a(Nx),

and let us define similarly:

�(x) = eπ�s/2

(
2

x

)N−n (
2

x

)�s

e−i/x
1F1

[
h,a;2i/x

]
,

where (n,h, a) = (N, s,2�s + 1) and �N(x) = P̃N (x), or (n,h, a) = (N − 1, s + 1,

2�s + 2) and �N(x) = QN(x), for N ∈ N
∗ (recall that N − n = 0 in the first case and

N − n = 1 in the second case). It suffices to show that for p ∈ {0,1}, |�(p)

N (x) − �(p)(x)| ≤
C(x0,s,p)

Nx�(s)+1+p to deduce (3.3) and (3.4). Let us first investigate the case p = 0:

|�N(x) − �(x)|

≤ eπ�s/2

(
2

x

)�s+(N−n) {∣∣D′(N, s) − 1
∣∣ ∣∣(1 − i/(Nx))(N−s)/2−(N−n)
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× (1 + i/(Nx))−(N+s)/2 Fn,h,a(Nx)
∣∣

+ ∣∣(1 − i/(Nx))(N−s)/2−(N−n) (1 + i/(Nx))−(N+s)/2 − e−i/x
∣∣

× ∣∣Fn,h,a(Nx)
∣∣ + ∣∣e−i/x

∣∣ ∣∣Fn,h,a(Nx) − 1F1

[
h,a;2i/x

]∣∣} . (3.5)

We show that the bracket {.} is bounded uniformly by 1
N

C(x0, s). In the following, we look
at the three summands in the bracket separately. For the first one, we have by (2.12) and
(2.14) that

∣∣(1 − i/(Nx))(N−s)/2−(N−n) (1 + i/(Nx))−(N+s)/2 Fn,h,a(Nx)
∣∣ ≤ C(x0, s).

Moreover, it is easy to check (for example, by using Stirling formula) that

∣∣∣∣
�(2�s + N + 1)

N2�s+1�(N)
− 1

∣∣∣∣ ≤ 1

N
C(s).

Now, if some sequence aN > 0 converges to a > 0 in the order 1/N as N → ∞,√
aN → √

a, in the order 1/N as well, for N → ∞. Hence,

∣∣D′(N, s) − 1
∣∣ =

∣∣∣∣∣

(
�(2�s + N + 1)

N2�s+1�(N)

)1/2

− 1

∣∣∣∣∣ ≤ 1

N
C(s).

Thus, the first term in the bracket {.} of (3.5) is bounded by C(x0, s)/N . Let us look
at the second term:

∣∣Fn,h,a(Nx)
∣∣ ≤ C(x0, s),

again according to (2.14). Moreover,

∣∣(1 − i/(Nx))(N−s)/2−(N−n)(1 + i/Nx)−(N+s)/2 − e−i/x
∣∣

≤ ∣∣(1 − i/(Nx))(N−s)/2(1 + i/(Nx))−(N+s)/2 − e−i/x
∣∣ ∣∣(1 − i/(Nx))−(N−n)

∣∣

+ ∣∣e−i/x
∣∣ ∣∣(1 − i/(Nx))−(N−n) − 1

∣∣ . (3.6)

It is clear, that the second term in the sum is bounded by C(x0)/N . For the first term,
the second factor is bounded by C(x0), whereas for the first factor, we have the following:

∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)N/2 (
1 − i/(Nx)

1 + i/(Nx)

)−i�s/2 (
1 + 1/(Nx)2

)−�s/2 − e−i/x

∣∣∣∣∣

≤
∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)N/2

− e−i/x

∣∣∣∣∣

∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)−i�s/2
∣∣∣∣∣

∣∣∣
(
1 + 1/(Nx)2

)−�s/2
∣∣∣

+ ∣∣e−i/x
∣∣
∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)−i�s/2

− 1

∣∣∣∣∣

∣∣∣
(
1 + 1/(Nx)2

)−�s/2
∣∣∣

+ ∣∣e−i/x
∣∣
∣∣∣
(
1 + 1/(Nx)2

)−�s/2 − 1
∣∣∣ . (3.7)
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We investigate all terms in this sum separately: |(1 + 1/(Nx)2)−�s/2 − 1| can be bounded
by C(x0, s)/N using binomial series, and

∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)−i�s/2
∣∣∣∣∣ = |exp{−�sArg(1 + i/Nx)}| ≤ C(x0, s).

Furthermore,
∣∣∣∣∣

(
1 − i/(Nx)

1 + i/(Nx)

)−i�s/2

− 1

∣∣∣∣∣

= |exp{−�sArg(1 + i/(Nx))} − 1|
= |exp{−�sArctan(1/(Nx))} − 1|

≤

∣∣∣∣∣∣∣

∞∑

k=0

(
−�s

∑∞
n=0

(−1)n

2n+1 (1/(Nx))2n+1
)k

k! − 1

∣∣∣∣∣∣∣

≤ 1

N
C(x0, s).

Here, we use the fact that the Taylor series for the arctangent is absolutely convergent if
0 < 1/(Nx) < 1, which is true for N large enough. Now, by considering the series of the
complex logarithm of 1± i/(Nx) (absolutely convergent for N large enough), one can show
that

∣∣(1 ± i/(Nx))∓N/2 − e−i/(2x)
∣∣ ≤ 1

N
C(x0).

The remaining terms in the sum (3.7) are clearly bounded by C(x0, s) and hence, the second
term in the sum (3.5) converges to zero in the order 1/N .

We investigate the third term in (3.5): Clearly, |e−i/x | = 1. The second factor in the third
term requires somewhat more work:

∣∣Fn,h,a(Nx) − 1F1[h,a;2i/x]∣∣

=
∣∣∣∣∣

∞∑

k=0

(−n)k(h)k2k

(a)kk!
(

1

1 + iNx

)k

−
∞∑

k=0

(h)k(2i)k

(a)kk!
(

1

x

)k
∣∣∣∣∣

≤
∞∑

k=1

(|h|)k2k

(a)kk!

∣∣∣∣∣(−n)k

(
1

i − Nx

)k

−
(

1

x

)k
∣∣∣∣∣ ,

where the last inequality is true because of the absolute convergence of both sums. Now,

∣∣∣∣∣(−n)k

(
1

i − Nx

)k

−
(

1

x

)k
∣∣∣∣∣

≤ 1

xk
0

∣∣∣∣1 − (−n)k

((i/x) − N)k

∣∣∣∣
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= 1

xk
0

∣∣∣∣∣1 −
N−n+k−1∏

l=N−n

l − N

(i/x) − N

∣∣∣∣∣

= 1

xk
0

∣∣∣∣∣1 −
N−n+k−1∏

l=N−n

(N − l)+
N − (i/x)

∣∣∣∣∣ .

Since all the factors in the last product have a module smaller than 1, it is possible to deduce:

∣∣∣∣∣(−n)k

(
1

i − Nx

)k

−
(

1

x

)k
∣∣∣∣∣

≤ 1

xk
0

N−n+k−1∑

l=N−n

∣∣∣∣1 − (N − l)+
N − (i/x)

∣∣∣∣

≤ 1

xk
0

N−n+k−1∑

l=N−n

l + 1/x

N

≤ 1

xk
0

k2 + k/x0

N
.

This bound implies easily that:

∣∣Fn,h,a(Nx) − 1F1[h,a;2i/x]∣∣ ≤ C(s, x0)

N
,

and we can deduce:

|�N(x) − �(x)| ≤ 1

N

C(x0, s)

x�s+(N−n)
.

Therefore, (3.3) and (3.4) are proved for p = 0.
It remains to prove that

|�′
N(x) − �′(x)| ≤ 1

N

C(x0, s)

x�s+(N−n)+1
,

to show (3.3) and (3.4) for p = 1. But this is immediate using the same methods as above
and the fact that we can write

�′
N(x) = D′(N, s)eπ�s/2

(
2

x

)�s+(N−n)

(1 − i/(Nx))(N−s)/2−(N−n)

× (1 + i/(Nx))−(s+N)/2

[−(�s + (N − n))

x
Fn,h,a(Nx)

+ i

x2

{(
1 − s/N

2
− N − n

N

)
1

1 − i/(Nx)
+ 1 + s/N

2

1

1 + i/(Nx)

}
Fn,h,a(Nx)

+
∞∑

k=0

(−n)k(h)kk2k+1

(a)kk!
(

− iN

2

)(
1

1 + iNx

)k+1
]

,
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and

�′(x) = eπ�s/2

(
2

x

)�s+(N−n)

e−i/x

[−(�s + (N − n))

x
1F1[h,a;2i/x]

+ i

x2 1F1[h,a;2i/x] −
∞∑

k=0

(h)k(2i)kk

(a)kk!
(

1

x

)k+1
]

.

This ends the proof. �

Now we prove Theorem 1.9. Let us first prove the following result: for all n ∈ N
∗, and

for all symmetric and positive n × n matrices A and B such that sup1≤i,j≤n |Ai,j | ≤ α,
sup1≤i,j≤n |Bi,j | ≤ α and sup1≤i,j≤n |Ai,j − Bi,j | ≤ β for some α,β > 0, one has

|det(B) − det(A)| ≤ βn2αn−1. (3.8)

Indeed, the following formula holds:

det(B) − det(A) =
∫ 1

0
dλ Diff det[A + λ(B − A)].(B − A),

where for C := A + λ(B − A), Diff det[C].(B − A) denotes the image of the matrix B − A

by the differential of the determinant, taken at point C. Now, C is symmetric, positive, and
|Ci,j | ≤ α for all indices i, j , since C is a barycenter of A and B , with positive coefficients.
Moreover, the derivative of C with respect to the coefficient of indices i, j is (up to a possible
change of sign) the determinant of the (n − 1) × (n − 1) matrix obtained by removing the
line i and the column j of C. By using the same arguments as in the proof of inequality
(2.7), one can easily deduce that this derivative is bounded by αn−1. Hence:

|det(B) − det(A)| ≤
∫ 1

0
dλαn−1

∑

1≤i,j≤n

|Bi,j − Ai,j |

which implies (3.8). Now, we can compare the determinants of (K[N](xi, xj ))
n
i,j=1 and

(K∞(xi, xj ))
n
i,j=1 for x1, . . . , xn > x0 by applying (3.8) to:

Ai,j = (xixj )
�(s)+1 K[N](xi, xj ),

Bi,j = (xixj )
�(s)+1 K∞(xi, xj ),

α = C(x0, s), β = C(x0, s)/N.

Here, we use the bounds for K[N], K∞ and their difference given in Proposition 2.11 and in
Lemma 3.1. We obtain:

∣∣det(K[N](xi, xj )
n
i,j=1) − det(K∞(xi, xj )

n
i,j=1)

∣∣

≤ 1

(x1 · · ·xn)2�(s)+2

n2

N
(C(x0, s))

n.
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This implies

∣∣∣∣P
[

λ1(N)

N
≤ x

]
− det(I − K∞)|L2(t,∞)

∣∣∣∣

≤
∞∑

n=1

1

n!
∫

(x,∞)n

∣∣det(K[N](xi, xj )
n
i,j=1) − det(K∞(xi, xj )

n
i,j=1)

∣∣dx1 · · ·dxn

≤
∞∑

n=1

1

n!
n2

N

(∫

(x,∞)

C(x0, s)

y2�s+2
dy

)n

≤ 1

N

∞∑

n=1

n

(n − 1)!
(∫

(x0,∞)

C(x0, s)

y2�s+2
dy

)n

≤ C(x0, s)/N,

since the last sum is convergent and depends only on x0 and s.

4 Concluding Remark About U(N)

With the notations and results from Secti. 2.1, we know that the distribution of λ1(N), the
largest eigenvalue of a matrix in H(N) under the distribution (1.2), can be written as

P [λ1(N) ≤ a] = exp

(
−

∫ ∞

a

σ (t)

1 + t2
dt

)
. (4.1)

Using the Cayley transform H(N) � X �→ U = X+i
X−i

∈ U(N), we can map the general-
ized Cauchy measure from H(N) to the measure (1.4) on U(N). The inverse of the Cayley
transform writes as

θ �−→ i
eiθ + 1

eiθ − 1
= cot

(
θ

2

)
,

for θ ∈ [−π,π]. θ = 0 is mapped to ∞ by definition. Using this application, (4.1) turns into:

P [θ1(N) ≥ y] = exp

(
−1

2

∫ y

0
dφ σ

(
cot

(
φ

2

)))
, (4.2)

for y = 2arccot(a), y ∈ [0,2π ], and eiθ1(N) = λ1(N)+i

λ1(N)−i
. θ1(N) being here in [0,2π] (and not

in [−π,π]!). In other words, the distribution of the largest eigenvalue on the real line of a
random matrix H ∈ H(N) with measure (1.2), maps to the distribution of the eigenvalue
with smallest angle of a random matrix U ∈ U(N) satisfying the law (1.4). Here, smallest
angle has to be understood as the eigenvalue which is closest to 1 looking counterclockwise
on the circle from the point 1.

According to [4], the eigenvalues {eiθ1 , . . . , eiθN }, (recall that θi ∈ [−π,π]) of a random
unitary matrix U , satisfying the law (1.4), also determine a determinantal point process with
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correlation kernel

KU
N (eiα, eiβ) =dN(s)

√
wU(α)wU(β)

× eiN
α−β

2 Qs
N(e−iα)Qs

N(eiβ) − e−iN
α−β

2 Qs
N(eiα)Qs

N(e−iβ)

ei
α−β

2 − e−i
α−β

2

, (4.3)

where dN(s) = 1
2π

(s+1)N (s+1)N
(2�s+1)N N !

�(1+s)�(1+s)

�(1+2�s)
, Qs

N(x) = 2F1[s,−n,−n − s;x] and wU is the

weight defined after (1.4). If N → ∞, the rescaled correlation kernel 1
N

KU
N (eiα/N , eiβ/N )

converges to

KU(α,β) = e(s)|αβ|�se− π
2 �s(Sgn(α)+Sgn(β))

× ei
α−β

2 Qs(−iα)Qs(iβ) − e−i
α−β

2 Qs(iα)Qs(−iβ)

α − β
, (4.4)

where e(s) = 1
2πi

�(s+1)�(s+1)

�(2�s+1)2 , and Qs(x) = 1F1[s,2�s + 1;x] (again according to [4]).

In [4], it is also shown that the kernel KU coincides up to multiplication by a constant
with the limiting kernel K∞ from (1.17) if one changes the variables in (4.4) to α = 2

x
and

β = 2
y

, x, y ∈ R
∗. This not surprising because a scaling x �→ Nx for the eigenvalues in the

Hermitian case corresponds to a scaling α �→ α
N

for the eigenvalues in the unitary case as
can be seen from the elementary fact that for x ∈ R

∗, and N ∈ N, one has

Nx + i

Nx − i
= e

2i
Nx

+O(N−2). (4.5)

Remark 4.1 Note that because of the O(N−2) term in the argument of (4.5), it is not possible
to give an identity involving the kernel KN of Theorem 1.1 and the kernel (4.3).
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